4.2.1 EQUIVALENCE PARTITIONING (K3)

Black-box Test Techniques l

Equivalence Boundary Decision Table ’ State Transition '
Partitioning Value Analysis | Testing ; Testing |

One test case for
each partition is
sufficient

Equivalence partitioning (EP, partition testing): A black-box test technique in which test conditions are equivalence partitions

exercised by one representative member of each partition (ISO 29119-1)
Equivalence partition (equivalence class): A subset of the value domain of a variable within a component or system in which all

values are expected to be treated the same based on the specification
Sec. 4.2.1

CONFIGURATION

INTERNAL

ITEMS VALUES

" TEST OBJECT

) (o)
OUTPUTS
INPUTS
TIME-RELATED INTERFACE
VALUES PARAMETERS

Equivalence partitions can be identified for any data element related to the test object

Sec. 4.2.1

'EQUIVALENCE /|

PARTITIONS |/,

e

Continuous 4
y

Discrete 4
V

Ordered ;

Unordered ;

| Not Overlapping ;

s ta

Finite

|

Infinite i

Not Empty

e Any partition may be divided into sub partitions

e Each value must belong to one equivalence partition only

Sec.4.2.1

LOW SEVERITY

“ﬁ i VALID —
| TR ACCEPTED

REJECTED

TEST OBJECT

Valid partition: A partition containing valid values
Invalid partition: A partition containing invalid values

Sec. 4.2.1
5

LOW SEVERITY

VALID -
ACCEPTED

INVALID -
REJECTED

Should be tested
individually to ensure
that failures are not
masked

Valid partition: A partition containing valid values
Invalid partition: A partition containing invalid values

Sec. 4.2.1
6

COVERAGE = 100%

/'____

Minimum of one
value per partition

YOUNG MIDDLE-
ety ADULT AGED ADULT SENIOR

I
I
I
I
I

Invalid Valid
/

PARTITIONS

Coverage (test coverage): The degree to which specified coverage items are exercised by a test suite, expressed as a
percentage
Coverage item: An attribute or combination of attributes derived from one or more test conditions by using a test technique

Sec. 4.2.1
%

COVERAGE = 100%

T \

YOUNG MIDDLE- \

.

o) |
/

= |

I

\ Valid Invalid Invalid Valid

— — —— —— —

/

PARTITIONS TOTAL NUMBER =4

TESTED COVERAGE
&3 Number of Partitions Tested

1
, ‘Z‘ x 100% = 25% Coverage = x 100%

Total Number of Partitions
\) 2
— x100% = 50%

Sec. 4.2.1
8

MULTIPLE SETS OF PARTITIONS

COLOUR LOW SEVERITY
VALID -
INVALID —
REJECTED \ACCEPTED
/0
v)
PARTITIONS TOTAL NUMBER =3 PARTITIONS TOTAL NUMBER =4

Each Choice Coverage: It is required that test cases exercise each partition from each set of partitions at
least once

Sec. 4.2.1
9

MULTIPLE SETS OF PARTITIONS

COLOUR

PARTITIONS TOTAL NUMBER = 3

LOW SEVERITY

VALID -

INVALID ~ _ ACCEPTED i

REJECTED

PARTITIONS TOTAL NUMBER = 4

[Each Choice Coverage = 100%

m=) Minimum Number of Tests = 4]

Sec. 4.2.1
10

MULTIPLE SETS OF PARTITIONS

COLOUR LOW SEVERITY
VALID -
A st

PARTITIONS TOTAL NUMBER = 3 PARTITIONS TOTAL NUMBER = 4

3+4 Number of Partitions Covered
ﬁ x 100% = 100% ECe= x 100%
Total Number of Partitions

* 1 + 2
a = x 100% = 43% Sec. 4.2.1

11

Performance .
, Partition Name
Rating

<0

0-4
5-7
8- 10

S0

Invalid Rating

No Bonus
Standard Bonus

High Bonus

Invalid Rating

EXAMPLE

Reject the input.
Error message: "Invalid rating: Rating cannot be negative"

No bonus
A bonus of $1,000
A bonus of $2,000

Reject the input.
Error message: "Invalid rating: Rating cannot exceed 10"

Sec. 4.2.1
12

EXAMPLE

Performance Rating Partition Name

<0 Invalid Rating
0-4 No Bonus
Y Standard Bonus
8-10 High Bonus
> 10 Invalid Rating
Invalid Valid Valid Valid Invalid
Partition 1 Partition 2 Partition 3 Partition 4 Partition 5
“Invalid Rating” | “No Bonus” “Standard Bonus” | “High Bonus” “Invalid Rating”

Sec. 4.2.1
13

EXAMPLE

Performance Rating Partition Name

<0 Invalid Rating

0-4 No Bonus

LY Standard Bonus

8-10 High Bonus

> 10 Invalid Rating

Invalid Valid Valid Valid Invalid
Partition 1 Partition 2 Partition 3 Partition 4 Partition 5
“Invalid Rating” “No Bonus” “Standard Bonus” | “High Bonus” “Invalid Rating”
-3 2 5 9 15 Sec. 4.2.1

14

Copyright © 2009 -2025 Exactpro

© def bonus(rating: int):
if rating <= -1:
return "Invalid rating: Rating cannot be negative”
elif rating >= @ and rating <=
return @
elif rating >= 5 and rating <=
return 1600
elif rating >= 8 and rating <=
return 2000
else:
return "Invalid rating: Rating cannot exceed 18"

rating = 12
result = bonus(rating)
print(result)

Invalid rating: Rating cannot exceed 1@
rating = 7

result = bonus(rating)
print(result)

