4.2.1 EQUIVALENCE PARTITIONING (K3)



Black-box Test Techniques l
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Partitioning Value Analysis | Testing ; Testing |

One test case for
each partition is
sufficient

Equivalence partitioning (EP, partition testing): A black-box test technique in which test conditions are equivalence partitions

exercised by one representative member of each partition (ISO 29119-1)
Equivalence partition (equivalence class): A subset of the value domain of a variable within a component or system in which all

values are expected to be treated the same based on the specification
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Equivalence partitions can be identified for any data element related to the test object
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e Any partition may be divided into sub partitions

e Each value must belong to one equivalence partition only
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Valid partition: A partition containing valid values
Invalid partition: A partition containing invalid values
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Should be tested
individually to ensure
that failures are not
masked

Valid partition: A partition containing valid values
Invalid partition: A partition containing invalid values
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Coverage (test coverage): The degree to which specified coverage items are exercised by a test suite, expressed as a
percentage
Coverage item: An attribute or combination of attributes derived from one or more test conditions by using a test technique
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Each Choice Coverage: It is required that test cases exercise each partition from each set of partitions at
least once
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MULTIPLE SETS OF PARTITIONS
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3+4 Number of Partitions Covered
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Total Number of Partitions

* 1 + 2
a = x 100% = 43% Sec. 4.2.1
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Performance .
, Partition Name
Rating

<0

0-4
5-7
8- 10

S0

Invalid Rating

No Bonus
Standard Bonus

High Bonus

Invalid Rating

EXAMPLE

Reject the input.
Error message: "Invalid rating: Rating cannot be negative"

No bonus
A bonus of $1,000
A bonus of $2,000

Reject the input.
Error message: "Invalid rating: Rating cannot exceed 10"
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EXAMPLE

Performance Rating Partition Name

<0 Invalid Rating
0-4 No Bonus
Y Standard Bonus
8-10 High Bonus
> 10 Invalid Rating
Invalid Valid Valid Valid Invalid
Partition 1 Partition 2 Partition 3 Partition 4 Partition 5
“Invalid Rating” | “No Bonus” “Standard Bonus” | “High Bonus” “Invalid Rating”
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EXAMPLE

Performance Rating Partition Name

<0 Invalid Rating

0-4 No Bonus

LY Standard Bonus

8-10 High Bonus

> 10 Invalid Rating

Invalid Valid Valid Valid Invalid
Partition 1 Partition 2 Partition 3 Partition 4 Partition 5
“Invalid Rating” “No Bonus” “Standard Bonus” | “High Bonus” “Invalid Rating”
-3 2 5 9 15 Sec. 4.2.1
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© def bonus(rating: int):
if rating <= -1:
return "Invalid rating: Rating cannot be negative”
elif rating >= @ and rating <=
return @
elif rating >= 5 and rating <=
return 1600
elif rating >= 8 and rating <=
return 2000
else:
return "Invalid rating: Rating cannot exceed 18"

rating = 12
result = bonus(rating)
print(result)

Invalid rating: Rating cannot exceed 1@
rating = 7

result = bonus(rating)
print(result)




