
High Performance Load Generator for Automated
Trading Systems Testing

D.K. Guriev
“Innovative Trading Systems”, LLC

Saratov, Russia
Email: dmitry.guriev@exactprosystems.com

A.A. Terentyev

Yuri Gagarin State Technical University of Saratov
Saratov, Russia

M.A. Gai
“Innovative Trading Systems”, LLC

Moscow, Russia
Email: maria.gai@exactprosystems.com

I.L. Itkin

“Exactpro Systems”, LLC
San Rafael, CA, USA

 Email: a_a_terentyev@mail.ru Email: iosif.itkin@exactprosystems.com

Abstract—The growing volume of orders generated by HFT
(high-frequency trading) systems has posed a challenge of
conducting exchange and brokerage systems testing in
production-like environments. Specialized testing tools are used
to ensure quality of high load trading systems with high
availability. The main requirement for such tools is that they
should be capable of creating realistic, high loads using limited
hardware infrastructure. This article describes a load injection
tool developed for testing automated trading systems and an
approach that ensures high performance.

Keywords: load testing, high-frequency trading (HFT), testing
tools

I. INTRODUCTION

High-frequency trading of financial instruments (HFT)
allowing to reduce latency when trades are conducted has
grown recently and currently accounts for about 30% of all
equity trading in the UK and, possibly, over 60% of all equity
trading in the USA [1]. Due to this, brokerage and exchange
systems experience growing load from the stream of
transactions generated by automated trading systems. The
operators of trading platforms, regulators and trading
participants must be sure of reliability of software and
infrastructure of the trading platforms [2] in the conditions of
constantly growing load.

In the course of software development, methods of load
testing are used in order to determine the maximum
throughput, possible bottlenecks and locating elements of the
systems that can be problematic. Load testing is understood as
the process of sending a large amount of orders into the system,
verification of timeliness and correctness of responses received
from it, and verification of the system’s internal state.

Various commercial and open source load generators are
currently used for software load testing. The following
products can serve as examples: Apache JMeter, HP Load
Runner, IBM Rational Performance Testing, Borland Silk
Performer, and others [3-6]. The main concept used in these
products is that a large number of virtual users are created
emulating the behavior of real ones in order to model the

conditions the program/system will operate in real life. When
the testing tools imitate and support the connection with a large
number of users under high load, performance limitations can
surface. These are described in the second part of this paper.

A tool for testing high load trading systems with the
required performance characteristics has been developed by
Exactpro Systems LLC. The tool has been used to verify some
of the largest exchange technology infrastructures in Western
Europe [7; 8]. The developed instrument supports the
following protocols: FIX (all versions), ITCH, LSE, Native,
SOLA SAIL & HSVF, HTTP, SOAP, and various binary
trading systems protocols. One of the architectural distinctions
of the developed testing tool is its ability to support multiple
protocols. Therefore, the addition of new protocols and new
versions of protocols that are already supported is now a
relatively low-cost task. The third part of the paper focuses on
certain aspects of load testing data preparation. The fourth part
presents the tool’s capabilities of its tuning, including setting
the load profile.

II. THE OPTIMIZATION OF LOAD CREATION PROCESS

A number of sources, in particular [9], provide general
information about the process of load creation. Load generators
are classified into measurement-based and model-based ones
[10]. Measurement-based load generators are useful for finding
throughput of the system under test and building dependencies
between response times and load. Model-based load generators
are used for simulating entry data distribution that is as close as
possible to what the system will experience in production. The
high performance load generator developed by the authors
supports both of the above mentioned approaches. The models
are used to create configuration files before the generator is
launched. Therefore, the tool can avoid using up the resources
for processing information pertaining to the model at the time
the tests are performed.

Load generators are also classified into closed-cycle and
open-cycle ones [11]. In closed-cycle generators, having sent a
message, the thread being executed waits for a response from
the system before it starts sending the next portion of requests.
An open-cycle generator can continue sending messages

without waiting for a response from the system under test. The
majority of web-testing tools are closed-cycle generators. This
is due to using the concept of virtual users, each of which
consecutively performs the steps of a test scenario. In
comparison to an open-cycle generator, a closed-cycle one
requires a much larger number of threads of execution and
switching between them. Often, closed-cycle generators
process system responses and messages sent into the system in
the same thread, which additionally reduces the tool’s
performance and sometimes even affects accuracy. Thus, open-
cycle generators require less hardware to create the needed load
levels. The also do not require creating extra threads and their
synchronization in order to create a fixed load level. The tool
presented in this paper is an open-cycle generator.

When a load testing tool was being developed,
consideration was given to the necessity of aligning the
executable threads and processor cores in order to flatten the
distribution of system’s incoming messages over time [12].
The authors have come to the conclusion that the millisecond
resolution of system timers, which is characteristic of the
majority of contemporary Linux-systems, is sufficient for
creating a realistic trading load. The absence of dependency on
the processor cores releases a certain amount of hardware
resources for the load generator and allows launching an
optimal amount of threads in a centralized way. The developed
tool uses a central controller, which makes it possible to
configure the required number and parameters of protocol
connections for each thread in advance. The presence of a
central controller also allows issuing a command to perform
coordinated actions by all threads. For example, a concurrent
start of a messages stream or a concurrent drop of established
connections.

When a trading system is being tested, a load generator
substitutes a large number of automated trading systems using
a multitude of servers. Hardware that is available for setting up
testing tools is always limited, though, due to economical
reasons [13]. The conditions of continuing financial unrest
dictate that even the largest financial institutions must function
under the regime of maximum spending optimization. It is
therefore necessary that the process of creating outgoing
messages is as light as possible. For the process of load
creation to be optimal, it is necessary to prepare messages
templates before the test is performed, thus reducing the
processor time on the servers where the tools are deployed to.
Similar concepts were applied by the developers of a load
generator at Yandex, the largest Russian search engine. Their
open source “Yandex.Tank” testing tool is designed for
generating huge volumes of messages over HTTP protocol
[14]. The high performance capabilities of “Yandex.Tank” are
thanks to concentrating the load in a single session and a single
thread as well as using a prepared file with static requests.
Load generators for trading systems cannot use static data and
have a few other limitations, which are examined in the next
part of the article.

III. SPECIFICS OF LOAD TESTING FOR TRADING SYSTEMS

[15] examines the main requirements for load modeling of
high-frequency trading . The logic of how such systems work

presents significant limitations for using static data that was
recorded earlier or is pre-determined. This section describes
some of the specifics of creating load and preparing incoming
data for trading systems testing.

3.1. Preparing messages from templates
Due to the fact that trading is not anonymous, in order to

maintain the session the server must receive the names of
existing users, correct sequential message numbers, as well as
time stamps of when each message was sent. Our analysis has
shown that building the messages right before sending them by
using dictionaries is very expensive from the system resource
usage standpoint. Therefore, a decision was made to use
templates where the order of fields and the set of key values are
set before the test begins. For example, in a NewOrderSingle
FIX message, only a few parameters will be changed before the
time it is sent. Such parameters must be unique (for example,
ClOrdID(11) – the number of a client order) and must depend
on the current time (ExpireTime(126) – the time when the
order expires, ExpireDate(432) – the order’s expiry date). The
rest of the parameters in a new order do not change. The
following parameters are changed in order to maintain the
session:

BodyLength(9) – message lenghth;

SenderCompID(49) – the name of the company, which sent the
order;

TargetCompID(56) – the name of the company the order was
sent to;

MsgSeqNum(34) – a unique message number;

SendingTime(52) – current time;

CheckSum(10) – verification value.

All needed parameters taken from the NewOrderSingle
message are placed into OrderCancelReplaceRequest and
OrderCancelRequest messages. Such as:

OrderID(37) – order identifier;

Price(44) – order price;

Quantity(53) – order size;

Side(54) – order side (buy or sell);

Symbol(55) – instrument symbol.

The assumption that all parameter values are true makes it
possible to significantly reduce the time for checking the field
values and for verifying that their sequence in a message is
correct.

3.2. Playback of earlier recorded data
Sending of recorded data prepared in advance leads to

distorting the test. When test data is being prepared, it it
required to keep the same proportion of trading events as
observed in real trading. The analysis of real trading shows that
one trade can consist of over 20 order changes.

Recorded data consist of a variety of new orders, their
changes, and cancellations. Due to the fact that orders are sent

from different streams to the same order book, they can arrive
in sequence that differs from what was recorded. Even if the
arrival time of an order to the market differs slightly, the
consequences can be detrimental. For example, by the time the
market receives an order, other orders may have been placed in
the order book in a sequence that is different to what is in the
recording and may be traded in a different sequence. Therefore,
later changes or cancellation of the order will be impossible if
the order has been traded and removed from the order book.
This leads to a malfunction in the order of test execution which
will later lead to a scenario that differs from the recorded one.
Thus, the test market will witness events different from the
ones that occurred when the scenario was recorded. For
example, the market will send a much larger number of rejects
to change or cancel orders. Also, the differences from the
original scenario will accumulate, and the proportion of the
trading events may significantly differ from the original one.

3.3. Usage of determined scenarios
One other possibility to set up a test is preparing two

groups of orders: the first one will contain orders that are
known to become part of trades (active orders); the second one
consists of orders that must not be traded (passive orders).
However, possible difficulties brought by the Market
Surveillance System should be taken into account. One of the
functions of the component is real-time monitoring of
“prearranged” orders, i.e. the very same orders that must be
traded when the test is conducted, and reporting such events to
a service watching out for market price manipulation.
Obviously, this option is not acceptable when test scenarios are
created. Due to that, our specialists have built a randomized
load generator that uses a feedback mechanism. Randomizing
is used to generate a new price when order amendment
message is sent. Three parameters are used for such
randomization: original price, price change range and price
tick.

The original price is set in the array of data for each
instrument and for each side (buy or sell). The original prices
must meet the following conditions:

- price of buying must be lower than price of selling;

- the difference between the original sell prices and buy prices
must be around 2-3% of opening price.

The buy and sell price change range is selected in such a
way that the prices of corresponding offers overlap, making
trading possible, and that offer prices are not over 10%
borderline – a condition which, if broken, may lead to stopping
trading in an instrument or the entire segment of instruments.
These parameters allow for flexible selection of desired
average proportion of the number of orders and the number of
amendments per one order on average. The smaller the area
where buy and sell prices overlap is, the less amount of trades
is possible, and the larger the number of amendments will
happen on average. Note should be taken that this nonlinearly
depends on the price overlap interval. As the prices are set for
each instrument individually, it becomes possible to set up
different number of trades on different instruments for one test.

Price tick is set based on instrument configuration. For
example, some instruments can trade with 0.05 price tick,
others can have 0.10 price tick.

The feedback mechanism is necessary in order to track the
order status on the market and ensure the possibility of order
amendment or cancellation. The order can have the following
statuses:

New – the order hasn’t participated in trading;

PartFilled – the order has been partially filled;

Filled – order has been fully filled;

Canceled – the client has canceled the order;

Expired – the order lifetime has expired;

Rejected – the exchange has rejected the order.

Only orders in a “New” or “PartFilled” status can
participate in trading. As soon as an order changes its status, it
becomes irrelevant and the information about it is deleted
instantly.

IV. AN EXAMPLE OF THE DEVELOPED LOAD GENERATOR

In this part of the paper, we will examine several options of
setting up the load generator developed by the authors for
testing trading systems based on FIX protocol [16].

The test is set up with the help of 4 types of configuration
files containing the following:

• setting up load parameters;

• session configuration;

• preparation of messages;

• distribution across messages.

4.1. Format of file with load parameters
In order to set up the load parameters a file with the

following format is used:
#Configuration file with session parameters:

CONNECTIONS_CONFIG = fixConnections.cfg

#Sessions used from the sessions file:

CONNECTIONS_RANGE = 1-3, 5, 7-

#A file with messages stubs:

MESSAGE_TEMPLATES = fixMessageTemplates.dat

#A file with distribution by message:

MESSAGE_RATES = messageRates.cfg

#Sequence of actions before the start of the test:

INIT_CONFIG = connect(100ms), logon(3s)

#Load configuration:

LOAD_CONFIG = const(1000,5m)

#A steady load of 1,000 messages per second is set up

#Over the course of 5 minutes

#The number of repetitions of the load scenario determined by

#the LOAD_CONFIG parameter:

NUMBER_REPETITIONS = 10

#Seguence of events after the end of test:

SHUTDOWN_CONFIG = logout(1s), disconnect(10ms)

#Sequence of actions if connection is dropped

#unexpectedly

ON_RECONNECT_CONFIG = connect(10ms), logon(3s)

#Flag ot perform actions determined in

#ON_RECONNECT_CONFIG if connection is dropped:

HOLD_CONNECTION = 1

#If value = 0, actions in ON_RECONNECT_CONFIG are not

#performed, and connection is not re-established.

#Delay time between session authorization, in milliseconds

LOGON_INTERVAL = 1000

As the clients have the ability to use their own trading
programs, a possibility exists that due to a reason, such as a
large volume of messages sent by the system, the client’s
programs won’t be able to read the data. This can negatively
affect the behavior of the trading system. In order to test this
scenario, the developed software product has a special
limitation on the number of read data per second allowing
emulating slow clients.

4.2. Format of file with session configuration
Connection parameters are set up in a file of the following

format: the [COMMON] section is used for setting up general
connection parameters

[COMMON]

HOST = 10.10.10.10

PORT = 5555

TARGET_COMP_ID = FGW

The [FIX] section is used for setting up unique parameters of a
separate connection:

[FIX]

SENDER_COMP_ID = LOAD_1

RESET_SEQ_NUM_AFTER_LOGOUT = 0

PARTY_ID = LOAD_1

The [FIX] section must be repeated as many times as many
connections are planned to be used. The connections that are to
participate in the test are determined by the
CONNECTIONS_RANGE parameter that is part of the file
containing the load parameters.

4.3. Format of file with messages stubs
The file contains an array of named message stubs. The

stubs have correct format and sequence of message fields.

Some of the fields will be replaced by correct data right before
a message is sent.

Logon
8=FIXT.1.1|9=61|35=A|34=1|49=SenderCompID|56=TargetCompI
D|98=0|108=3600|554=password|1137=9|10=135|EOM

NewOrderBuy
8=FIXT.1.1|9=199|35=D|34=1|49=SenderCompID|56=TargetComp
ID|1=CLIENT|11=ClOrdID|38=200|40=2|44=9.8|54=1|55=Symbol|
59=6|60=20130728-
13:34:03.194|432=20130730|528=P|581=3|1138=60000|9303=I|45
3=1|448=PartyID|447=D|452=76|10=047|EOM

NewOrderSell
8=FIXT.1.1|9=199|35=D|34=1|49=SenderCompID|56=TargetComp
ID|1=CLIENT|11=ClOrdID|38=150|40=2|44=10.2|54=2|55=Symbo
l|59=6|60=20130728-
13:34:03.194|432=20130730|528=P|581=3|1138=60000|9303=I|45
3=1|448=PartyID|447=D|452=76|10=047|EOM

Cancel
8=FIXT.1.1|9=134|35=F|34=1|49=SenderCompID|56=TargetCompI
D|11=ClOrdID|41=OrigClOrdID|54=1|55=Symbol|60=20130728-
13:34:03.178|9303=I|453=1|448=PartyID|447=D|452=76|10=050|
EOM

Replace
8=FIXT.1.1|9=179|35=G|34=1|49=SenderCompID|56=TargetComp
ID|1=CLIENT|11=ClOrdID|38=180|40=2|41=OrigClOrdID|54=1|5
5=Symbol|60=20130728-
13:34:03.178|432=20130730|1138=70000|9303=I|453=1|448=Party
ID|447=D|452=76|10=077|EOM

Logout
8=FIXT.1.1|9=29|35=5|34=111|49=SenderCompID|56=TargetComp
ID|10=249|EOM

4.4. Format of file with messages stubs
The file contains a proportion of messages number in

portions per each message type:
NewOrderBuy = 15

Replace = 50

Cancel = 5

Depending on the setting, MESSAGE_SELECTION-
ORDER = sequential or = random, the messages will be
selected either sequentially or at random.

4.5. A simplified algorithm schema
Figure 1. shows the schema for an algorithm selecting and

sending messages. The first stage consists of reading incoming
data. If data exists, the analysis of received responses and the
amendment of order statuses or their parameters take place.
Then a new message is selected via random or consecutive
sorting. If a command to create a new order was selected, its
parameters are committed to memory for future use. If a
message for amending or cancelling an order was selected, an
order without a corresponding unanswered request is picked.
The order parameters are inserted into the message and sent
into the trading system. Then the time elapsed since the
beginning of the iteration is computed. It is compared with the
pre-calculated average time for one iteration, and a pause is
made if needed. The “read-send-wait” sequence allows taking

into account all latest changes within the system under test and
sending functionally correct messages based on that.

Fig. 1. Algorithm schema of receiving and sending

messages

Launching of a test with maximum load on Intel(R)
Xeon(R) CPU X5570 @ 2.93GHz produces up to 70,000
messages per second at exit from single core and can be
linearly scalable if a higher number of cores is used. The
results were confirmed when generating streams were
distributed across 8 cores against an exchange system in
production-like environment was used as the target. The
indicated load volume created from a single server exceeds
throughput capacity of existing equity trading systems. The
70,000 from a single core figure corresponds to the maximum
metric for testing of web-infrastructures with the help of static
requests [17].

4.6. Configuring the load profile
This section describes the load profile configuration. The

load is determined by the following parameter:
LOAD_CONFIG = phase1 [, phase2, … phaseN]

The load phase can be as follows:

- const (freq, dur) – steady load with freq frequency dur
duration. A shortened format can also be used – freq:dur;

- step (freq, delta, steps, dur) – rising load with starting
frequency freq, the leg of frequency change delta, the number
of steps steps, and the duration of one step dur

- connect (dur) – all sessions must establish connection with
dur delay;

- disconnect (dur) – all sessions must drop connection with dur
delay;

- logon (dur) – all sessions must send a message with
authorization with dur delay;

- logout (dur) – all sessions must send a message about
ending the session with dur delay.

Dropping of a connection is not a critical problem in itself.
For example, all web-connections, and especially connections
in mobile applications, are designed for being dropped. For
financial protocols, this event may mean that a trading
participant may lose control over his orders, and many systems
are configured to cancel all open orders. If the trading
participant is actively trading and sends many orders, the loss
of connection will result in mass cancellation of his orders by
the system, which will lead to higher load to the system’s core.
It is also necessary to know how the system will behave when
the connection is restored and authorized under load. It is very
important to have the ability to repeat instant loss and
restoration of the connection under load. This is the reason why
the phases described above (connect, disconnect, logon, logout)
were created.

Figure 2 illustrates various load profiles: const, step and
micro burst. The latter one is created with the help of the const
phase characterized by having a short duration and a high load.

Fig. 2. The simplest load profiles

const: LOAD_CONFIG=const(1000, 20m)

step: LOAD_CONFIG=step(500, 500, 4, 4m)

micro burst: LOAD_CONFIG=200:5m, 40000:10ms, 200:5m,
75000:10ms, 200:5m

The authors’ experience shows that the step load shape
(load) is most suitable for determining the system’s maximum
performance. The micro-burst load shape is the closest one to
replicate contemporary high load trading systems.

V. CONCLUSION

The developed testing tool described in this paper is used
for measuring the throughput and response times of large scale
exchange and brokerage systems supporting the technological
infrastructure of the financial markets as part of projects
supported by Exactpro Systems LLC. The results confirm the
efficiency of selected methods: managing the executed threads
via a central controller and using pre-configured templates for
generating message streams.

Further work is planned to expand the list of open and
proprietary communication protocols supported by the
described testing tool. Despite the fact that the existing

performance of the load generator allows creating a realistic
data stream from a single server capable of overloading any of
currently existing trading platforms and ensuring the quality of
the trading systems to appear in the coming years, plans are
being made to develop a scalable module capable of
controlling load created from several servers.

The main direction of research work will be bringing the
mechanisms of processing reverse data stream to perfection in
order to expand the complexity of the load testing scenarios for
trading systems and making the scenarios more realistic. It is
also required to keep the testing tools efficient and economical.

REFERENCES

[1] The Future of Computer Trading in Financial Markets. Final Project
Report. / Foresight. The Government Office for Science, London. //
[Electronic resource]. – Access mode
http://www.bis.gov.uk/assets/foresight/docs/computer-trading/12-1086-
future-of-computer-trading-in-financial-markets-report.pdf

[2] Commission Roundtable on Technology and Trading: Promoting
Stability in Today's Markets. / U.S. Securities and Exchange, October 2,
2012 // [Electronic resource]. – Access mode
http://www.sec.gov/news/otherwebcasts/2012/ttr100212-transcript.pdf

[3] Apache JMeter manual // [Electronic resource]. – Access mode
http://jmeter.apache.org/usermanual/jmeter_distributed_testing_step_by
_step.pdf

[4] HP LoadRunner manual // [Electronic resource]. – Access mode
ftp://ftp.itrc.hp.com/applications/HPSoftware/ONLINE_HELP/LoadRun
ner11.50_User.pdf

[5] Rational Performance Tester // [Electronic resource]. – Access mode
http://www-03.ibm.com/software/products/ru/ru/performance/

[6] Silk Performer // [Electronic resource]. – Access mode
http://www.borland.com/products/silkperformer/

[7] Penhaligan,P.: Equity Trading: Performance, Latency & Throughput. /
ExTENT Conference // [Electronic resource]. – Access mode
http://www.slideshare.net/extentconf/extent3-turquoise-
equitytrading2012

[8] Benedetti E., Zanetti L.: London Stock Exchange - "The Focus Beyond
Low Latency". / ExTENT Conference // [Electronic resource]. – Access
mode http://www.slideshare.net/extentconf/extent-2013-obninsk-lse-the-
focus-beyond-low-latency

[9] Cong, J.: Load Specification and Load Generation for Multimedia
Traffic Loads in Computer Networks. // Ph.D. Dissertation, FB
Informatik, Univ. Hamburg, 2006; also published at: Shaker-Verlag,
Aachen 2006

[10] Jing Cong, Bernd E. Wolfinger: A Unified Load Generator Based on
Formal Load Specification and Load Transformation // valuetools '06:
Proceedings of the 1st international conference on Performance
evaluation methodolgies and tools

[11] Bodík P., Fox A., Franklin M., Jordan M., Patterson D.: Characterizing,
Modeling, and Generating Workload Spikes for Stateful Services //
SoCC’10, June 10–11, 2010

[12] David Mosberger, Tai Jin: httperf—a tool for measuring web server
performance // SIGMETRICS Performance Evaluation Review ,
Volume 26 Issue 3, December 1998

[13] Itkin, I.L.: Testing of exchange systems in high-frequency trading mode
// SQA Days #10:http://sqadays.com/talk.sdf/sqadays/11151/talks/12196

[14] Yandex.Tank Documentation // [Electronic resource]. – Access mode
https://media.readthedocs.org/pdf/yandextank/latest/yandextank.pdf

[15] Itkin Iosif: Theory of High Frequency Trading systems testing //
Software Development & Analysis Technologies Seminar
http://sdat.ispras.ru/2011/09/20-октября-модели-тестирования-
систем/ http://www.slideshare.net/IosifItkin/theory-of-high-frequency-
trading-systems-testing

[16] Official website of FIXprotocol // [Electronic resource]. – Access mode
http://www.fixprotocol.org/

[17] How to Generate Millions of HTTP Requests // [Electronic resource]. –
Access mode http://dak1n1.com/blog/14-http-load-generate

